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Abstract.  Defining high-level features, detecting them, tracking them and deriving
quantities based on them is an integral aspect of modern data analysis and visualiza-
tion. In combustion simulations, for example, burning regions, which are characterized
by high fuel-consumption, are a possible feature of interest. Detecting these regions
makes it possible to derive statistics about their size and track them over time. How-
ever, features of interest in scientific simulations are extremely varied, making it chal-
lenging to develop cross-domain feature definitions. Topology-based techniques offer
an extremely flexible means for general feature definitions and have proven useful in a
variety of scientific domains. This paper will provide a brief introduction into topolog-
ical structures like the contour tree and Morse-Smale complex and show how to apply
them to define features in different science domains such as combustion. The overall
goal is to provide an overview of these powerful techniques and start a discussion how
these techniques can aid in the analysis of astrophysical simulations.

1. Introduction

Extracting quantitative measurements from scientific data is becoming an increasingly
important aspect of visual data analysis. For this purpose, defining and extracting fea-
tures plays a key role in the analysis process. Examples for features of interest (see
Figure 1) include burning regions in combustion simulations, bubbles in the mixing
layer of a Rayleigh-Taylor instability or filament structures in a porous medium. Once
features are detected and extracted, one can derive quantitative measurements such as
feature count (number of burning regions or bubbles) or their size distribution and track
their evolution over time. In the following, we concentrate on defining features for
scalar fields, i.e., a function that assigns a scalar value to each location in the domain.
For scalar fields, two classes of feature definition are particularly ubiquitous: threshold-

based features and gradient-based features. Threshold-based features, such as burning
regions in a combustion simulation, which can be identified by thresholding the fuel
consumption rate, are based on absolute value. They are also closely related to iso-
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Figure 1.  Features of interest in various scientific data sets. (Left) Burning regions
in a combustion simulations. Shown is an isotherm colored by fuel consumption
rate. Features of interest are regions of intense burning (orange). (Center) Bubble
structure of in the mixing layer of a Rayleigh-Taylor instability simulation. (Right)
Filament structure in a porous medium.

surfaces (Lorensen & Cline 1987; Montani et al. 1994; Nielson 2003), which are an
extremely versatile and ubiquitous analysis component. An isosurface connects all lo-
cations in the domain where the scalar field assumes a specified isovalue. By varying
the isovalue and observing changes to the corresponding isosurface, one gains con-
siderable insights into properties of that scalar function. Additionally, isosurfaces arise
naturally in data analysis since distinct isosurfaces often have a useful physical interpre-
tation directly related to the application domain. In premixed combustion simulations,
an isotherm (isosurfaces of temperature) of the appropriate temperature often is asso-
ciated with the location of the flame; in molecular simulations, isosurfaces of a certain
charge density indicate molecular boundaries; and in fluid simulations, isosurfaces can
be used to identify an interface between mixing fluids.

Gradient-based features, on the other hand, consider the vector field obtained by
taking the gradient in each location of a scalar field. The image watershed, which
considers an image as topographic relief and segments it into watersheds, i.e., regions
where a following the gradient reaches the same local minimum, is a gradient-based
feature often used in image processing. Examples of gradient-based features in scien-
tific simulations include bubble structures or filament structures in porous media, see
Figure 1. Both threshold- and gradient-based features can be related to the topology
isosurfaces (Section 2). Using these approaches enables the analysis of a wide range of
scientific data sets (Section 3).

2. Topology of Isosurfaces and Topological Structures

In the context of scalar field analysis, topology-based methods characterize fundamen-
tal isosurface properties: the number of connected isosurface components and the genus
of an isosurface (i.e., the number of independent tunnels or “holes” in the surface).
Morse theory (Milnor 1963) provides insight into the topological evolution isosurfaces
of scalar functions defined on manifolds: Isosurface topology changes at distinct iso-
lated critical points in the scalar field that can be identified and analyzed analytically
as locations where the gradient vanishes. The type of a critical point can be identified
by examining the Eigenvalues of the Hessian. Defining critical points in terms of com-
binatorial criteria (Banchoff 1967, 1970) leads to a numerically more robust way of
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identifying them. Critical points are valuable navigation aids when exploring a data set
using isosurface extraction (Weber et al. 2002) or when constructing a transfer function
for direct volume rendering (Fujishiro et al. 1999, 2000).

Critical points identified by the Morse theory constructions provide hints about
the location of interesting behavior in a scalar field. However, as a set of individual
disconnected points they are only of limited use to decipher global structures in a data
set. This limitation is further aggravated by the fact that critical points can correspond
to features at different scales. In a molecular simulation, for example, critical points can
correspond to features at the atomic level (such as locations of nuclei) and features at
the molecular level (such as bonds between atoms). It is also possible that some critical
points arise from numerical “noise” or computational artifacts. Ideally, the analysis
should adaptively adjust to focus attention toward details at a given scale, e.g., the
molecular scale.

It is extremely useful to consider topological structures that “connect” critical
points and relate them to one another. Knowledge of such structures makes it possi-
ble to define topological simplification operations that remove features at scales that
are not of interest or features due to noise. The Reeb graph (Reeb 1946) is one of these
structures; it expresses the evolution of individual contours as a graph that is defined by
these critical points and their relationships. Consider a differentiable function, f, on a
compact manifold (such as a surface embedded in three dimensions). A level set of f
consists of all points on the manifold at a specified value. To define the Reeb graph, we
consider individual connected components, or contours, of the level sets of f. To obtain
the Reeb graph, one assumes that two points on the manifold are equivalent when they
belong to the same contour. The quotient space of the manifold with respect to this
equivalence relation is the Reeb graph, which essentially is a skeleton of the manifold.
Edges of the Reeb graph correspond to families of topologically equivalent contours,
and nodes correspond to critical points where the number of contours change.

For dependent scalar variables given on a simply connected simulation domain,
the Reeb graph is always a tree structure, called a contour tree (Boyell & Ruston 1963).
Like the Reeb graph, the contour tree captures the topological evolution of an isosur-
face as the isovalue varies. Contour tree nodes are the critical points of the data set
where the number of contours (connected components) changes. Nodes of degree one
(leaves of the tree) correspond to extrema, where contours are created or destroyed.
Interior nodes of degree three or higher correspond to “saddles,” where two or more
contours merge (or a single contour splits into multiple disconnected contours). Arcs
of the contour tree represent contours between critical points, i.e., contours that do not
change topology (with the exception of genus changes) as the isovalue varies between
critical values. Both Reeb graph, and its simpler version, the contour tree, support
characterizing threshold-based features.

The Morse complex and the Morse-Smale complex (Edelsbrunner et al. 2003b,a;
Bremer et al. 2004) comprise alternate means of relating critical points to each other,
and provide more insight in gradient-based features. Assuming the function on the
manifold is differentiable, and thus the gradient is defined at each location, it is possible
to start at any location in the domain and follow a gradient line either to its origin or its
destination, i.e., follow a line of steepest descent or ascent from that point. This line of
steepest ascent/descent will end in a local maximum/minimum. The Morse complex is
the segmentation of the domain into ascending or descending manifolds of the critical
points. An ascending/descending manifold of a maximum/minimum is the union of
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all locations in the domain for which the path of steepest ascent/descent ends at that
maximum/minimum. Superimposing ascending and descending manifolds results in
the Morse-Smale complex.

Using a Reeb graph, contour tree or Morse-Smale complex, it is possible to rank
topological features and simplify the global topological structure (Carr et al. 2004;
Gyulassy et al. 2005). This simplification supports further “boiling down” the data
to essential features and extracting a simpler, overall coarser structure.

3. Applications

Using contour tree simplification, it is possible to manipulate isosurfaces in terms of
fewer, important connected components (Carr & Snoeyink 2003; Carr et al. 2004),
represent the contour tree in a hierarchical layout that makes it possible to explore the
global structure of a data set and subsequently obtain a more detailed topology represen-
tation in regions of interest (Pascucci et al. 2009), and present alternate representations
that represent topological information in a more intuitive fashion (Weber et al. 2007).
Using topological structures also has proven useful in analyzing scientific simulation
data.

It is possible to apply the Morse-Smale analysis framework to study the influ-
ence of turbulence on the evolution of the cellular burning patterns observed in lean
premixed hydrogen-air flames. Extracting an isotherm (isosurface of temperature) and
segmenting it based on local fuel consumption rate yields a representation of individ-
ual burning cells that evolve in time. Since the network of burning cells may depend
strongly on the threshold that determines the segmentation, it is crucial to examine the
statistical characterization of these flame cells as a function of the threshold value to
ensure that the conclusions drawn from the analysis do not depend on the detailed val-
ues of this arbitrary parameter (Day et al. 2009). The Morse complex (Bremer et al.
2009a) provides a framework for evaluating the segmentation for a range of thresholds
and determining the stability of these arbitrary parameters. Based on a fixed threshold
derived from these parameter studies, it is then possible to track burning regions and
observe their evolution over time. The Reeb graph of the 3D surface that is swept by the
boundaries of burning regions in 4D space time efficiently represents a complete track-
ing graph (Weber et al. 2009), see Figure 2. A more recent approach uses join trees,
which arise in the elegant and efficient contour tree algorithm proposed by Carr et al.
(2003), to provide a summary representation of all threshold-based segmentations in
a combustion simulation (Bremer et al. 2009b). Using this representation, augmented
with derived measurements like burning region volume, it is possible to perform a wide
variety of analyses on a greatly reduced amount of data.

The use of topological structures, such as Reeb graph, contour tree and Morse-
Smale complex, has also proved useful in a wide variety of other application areas.
For example, these structures make it possible to identify and characterize features,
such as bubbles in fluid mixing simulations (Laney et al. 2006), which are difficult
to characterize using traditional feature detection methods. More recent work used
the Morse-Smale complex for calculating clean distance fields for porous solids hit by
a projectile (Gyulassy et al. 2007) and using the results to calculate measures such as
filament density. Other topological structures, such as Jacobi sets, allow relating critical
points between different functions/simulations (Edelsbrunner et al. 2004). Recently,
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Figure 2.  Subsection of the tracking graph of a combustion simulation that is
compressed to only show two merge and two split events. Arc color corresponds
to region color in corresponding segmentations. Round nodes correspond to cells
explicitly segmented by the Morse complex, diamonds to topological events between
time steps. Red signifies a merge, green a split, and turquoise a birth/death event. The
figure shows three zoom levels of the graph: graph for the entire simulation (bottom
graph), a portion corresponding to several subsequent time steps (middle graph) and
a zoom into the two merge and split events annotated with colored segmentations of
the isotherm.

Bremer et al. (Bremer et al. 2007) gave an overview of topology-based feature definition
and feature tracking.
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